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STEADY CREEP OF CIRCULAR CYLINDRICAL SHELLS
UNDER COMBINED LATERAL AND AXIAL PRESSURES

R. SANKARANARAYANAN

Hindustan Aeronautics Ltd.• Bangalore, India

Abstract-The present paper is concerned with studying the steady creep behaviour of thin circular cylindrical
shells subjected to combined lateral and axial pressures. The analysis is based on the Tresca Criterion and the
associated flow rule. In order to simplify the analysis, it is assumed that the wall of the shell is made of an ideal
sandwich section. It is assumed that the creep rate is the product of a power function of a stress and a function of
time. The stresses and deformations are plotted for various values of the parameters of the problem.

1. INTRODUCTION

THE creep stress analysis of thin cylindrical shells has been the subject of several recent
investigations. Gnat and Yuksel [1] studied the creep behaviour of simply supported
sandwich circular cylindrical shells made of Tresca material. CozzareIli, Patel and
Venkatraman [2] have obtained the creep stresses and deformations of clamped sandwich
cylindrical shells using the Mises criterion. Based on the square interaction curve [3]
the creep stress analysis of simply supported and clamped cylindrical shells [4,5] was
considered by the present author. All these papers are concerned with cylindrical shells
without end load. For such shells, the axial force is zero and the axial displacement is of
no intrinsic interest. Hence it was sufficient to restrict the consideration to the interaction
between the axial bending moment and the circumferential force. If the shell is subjected
to both radial and axial forces, the axial force also comes into play and three stress
resultants have to be considered rather than two. The present paper is concerned with
finding the stresses and deformations of circular cylindrical shells under combined lateral
and axial pressures.

Two problems have been investigated. First, circular cylindrical shells under hydro
static pressure are considered. Subsequently, the analysis is extended to cantilever shells
under combined lateral and axial pressures. The material ofthe shell is assumed to obey the
Tresca's criterion and the associated flow rule. In order to simplify the analysis, it is assumed
that the wall of the shell is made of an ideal sandwich section consisting of two thin sheets
separated by a core which is infinitely strong in shear but can carry no membrane stress.
It is assumed that the creep rate is the product of a power function of stress and a function
of time. From the outset, consideration will be limited to quasi-steady-state creep pro
cesses under constant uniform temperature. Thus the strain at any given instant is assumed
to be only a function of stress. A law of this form is frequently a good approximation over
at least the secondary creep range, and is valid for many materials whenever the total
strain is large enough for the elastic and primary creep effects to be neglected. The problem
is regarded as an instantaneous problem in strain rate and the process of integration to
determine the total strain is ignored.
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2. BASIC EQUATIONS

A. Shells under hytlrostatic pressure

The governing equations for the present investigation are expressed in terms of the
stress resultants of the shell, whose material has a tensile yield stress Ao. The shell (Fig. I)
is of uniform thickness 2H and has a radius A and a length 2L. The bending moment

FIG. I. Dimensions of circular cylindrical shell.

per unit length produced by axial stress is Mx; the axial and circumferential forces per
unit length are given by N x and N tJ> respectively. IfMx' N x and N tJ> are treated as generalized
stress variables, the corresponding strain variables are the curvature of the middle surface
K., and the strains Ex and €t/>. The axial and the inward radial displacements are denoted
by U and W, and the axial coordinate X is measured from the built-in end of the shell.
The shell is assumed to be subjected to a uniform hydrostatic pressure P.

For the analysis of the present paper, the following dimensionless quantities prove
convenient:

x
X

L'
W

W=-'
A'

Uu = _.'
L'

(2. I)

c
- = .J2.
c
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Within the framework ofthe small deformation theory ofshells, the governing equations
of equilibrium [6J become

(2.2a, b)n~ = 0;
m"
(c)~ +n4>+p = O.

Primes denote differentiation with respect to the dimensionless axial distance x. The
generalized strain rates and the velocities are related by

Ex = ti'; £4> = -w; K =x

0"w
(2.3)

The plastic yield condition for an axially symmetric cylindrical shell based on the
Tresca criterion has been described by Onat [7]. This yield condition has been replaced
by a piecewise linear approximation by Hodge [8J by considering an idealized sandwich
shell. The result is a polyhedron defined by twelve planes in the three dimensional stress
space with nx , n4> and mx as the rectangular cartesian coordinates. Figure 2 shows part
of the yield surface which is relevant for the present problem and the corresponding
equations of the planes are given in Table 1 [8]. Before we can proceed further, the
differenc~ between a plasticity problem and the corresponding creep problem should be

------"x

o

FIG. 2. Linearized interaction surface for circular cylindrical shell.
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TABLE I. FACES AND FLOW RULE FOR YIELD POLYHEDRON FOR

CIRCULAR CYLINDRICAL SHELL WITH END LOAD

Strain rate vector
Face Equation (Ii', - W, _W"/1: 2

)

-n<l> = I t/J(O, -1,0)

(l -nx+mx = I t/J(- t,O, I)

{J -nx-rnx = 1 ljJ(-I,O, -I)

stated. A shell will become plastic only if we can find a combination of the generalized
stresses such that the stress point is in contact with the yield surface. However, creep can
take place at any level of stress. A family of creep loci for the circular cylindrical shells is
indicated in Fig. 3.

Nil

•II A

---~MX

o

FIG. 3. Creep interaction surface of a circular cylindrical shell.

Let us consider a typical formulation of the creep law on the basis of the polyhedron
Fig. 2. In regime 1, Ex = Kx = 0 and the rate of dissipation of mechanical energy becomes

U = n.pE.p = QF(Q)G(t). (2.4)



Hence
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Q = n,p; €,p = F(Q)G(t). (2.5)

Similar results can be obtained for the other regimes and are given in Ref. [4]. The creep
laws relevant to the present problem are given in Table 2. The analysis has been carried
out on the assumption that F(Q) is a power function of the generalized stress.

F(Q) = (QjJ1.)n

where nand J1. are constants depending on the material and the temperature.

TABLE 2. CREEP LAWS FOR CIRCULAR CYLINDRICAL SHELL WITH END LOAD

(2.6)

Faces Generalized forces Generalized strain rates Creep law

Q = -no/> > 0 £4> ~ 0; £x rex = 0 <0/> = -F(Q)G(t)

l,a Q = - no/> = - nx+mx > 0 <0/> ~ 0; £x ~ 0; Kx-£o/> = F(Q)G(t)Kx ;;:>: 0; <x+Kx = 0

1, fJ Q = -no/> = -nx-mx > 0 £0/> ~ 0; £x = Kx ~ 0 KX +<4> = -F(Q)G(t)

The boundary conditions for the problem are

at x = 0,

at x = 1,

w(O) = w'(O) == 0

u(1) = w'(1) = m~(1) = 0

(2.7)

(2.8)

mx ' m~, n,p, U, wand w' must be continuous throughout the shell.

B. Shells under combined lateral and axial pressures

We consider a shell clamped at one end and free at the other as shown in Fig. 4. The
shell is subjected to a uniform lateral pressure P and at the same time the free end of the shell

FIG. 4. Shell clamped at one end and free at the other.



22 R.SANKARANARAYANAN

is subjected to an axial pressure Q. The shelI is of uniform thickness 2H, has a radius A
and a length L. In addition to the dimensionless quantities given by equation (2.1) we
further define

q = QAI2AoH. (2.9)

The equations of equilibrium (2.2a, b) are directly applicable for this case also. How
ever, the boundary conditions for this problem are

at x = 0,

at x = 1,

14(0) = w(O) = w'(O) = 0

mx(l) = m~(I) = 0, nx(l) = - q12.

(2.10)

(2.11 )

As stated previously mx , m~, nt/>, 14, wand W' must be continuous throughout the shell.

3. SOLUTION

A. Shells under hydrostatic pressure
Let us first consider a clamped shelI in a hydrostatic pressure field. The initial choice

of the stress profile is motivated by the physical considerations of the problem. PhysicalIy
it is reasonable to expect the hoop stress to be everywhere compressive, so that nt/> < O.

As a first hypothesis we shalI assume that the entire stress profile lies on regime 1.
Since Kx = 0 in regime 1, w must be a linear function of x. Application of the Boundary
conditions (2.7) and (2.8) implies no displacement at alI and the shelI would remain rigid,
a result which is not acceptable. An acceptable hypothesis can be formulated by modifying
the stress profile near the shelI edges x = 0 and x = 1. The simplest possible hypothesis
is a two piece stress profile; a finite portion 0 ::s; x ::s; p of the shelI is at the intersection of
regimes 1 and {3 and the remainder p ::s; x ::s; 1 of the shelI is at the intersection of regimes 1
and rx, Fig. 5(a). The solution under this hypothesis is given below:

O::s; x ::s; p:

m
~ = ![cos c(p - x) - tanh c(1- p) sin c(p - x) - 1]
p

m' c
pX = 2[sin c(p - x)+ tanh c(l- p) cos c(p-x)]

- {l-'Hcos c(p - x)- tanh c(l- p) sin c(p - x)]}

(3.1 )

(3.2)

(3.3)

_:' = r [cos c(x - ~)]{1- t[cos c(p -~) - tanh c(l- p) sin c(p - ~)]}" d~ (3.4)
G(c) (P111)" J0

w = fX [sin c(x _ ~)]{1- tecos c(p - ~) - tanh c(1- p) sin c(p - ~)J}" d~ (3.5)
Gc(pll1)" J0

14=
w'

(3.6)
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(11) (b) (c)

FIG. 5. Stress profiles for circular cylindrical shell under hydrostatic pressure.

mx = ~[1 cosh c(I - X)]
p 2 cosh c(I - p)

m~ = ~[sinh c(I-X)]
p 2 cosh c(1 - p)

nq, = _ {l_~[COSh C(I-X)]}
p 2 cosh c(I - p)

w' fP
_ 2 = [cos c(p-() cosh c(x- p)+sin c(p-() sinh c(x- p)]

G(c) (piPY 0

x {I -1[cos c(p - ()- tanh c(l- p) sin c(p - ()W d(

Ix [ 1 cosh c(l- ()]"
- P [cosh c(x-()] 1-2cosh c(l-p) d(

. iP

W = [cos c(p - () sinh c(x- p) + sin c(p - () cosh c(x- p)]
Gc(plll)" 0

x {l-1[cos c(p - ()- tanh c(l- p) sin c(p - ()]}" d(

-fx [sinh C(X-~)][l-~ cos~ C(1-()]" d(
P 2cos c(1-p)

:' (P [cos c(p - OJ{ I -Mcos c(p - ()
2G(pIIl)" 2G(c) (pill)" Jo

- tanh c(1- p) sin c(p - ~)]}" d(.

p has to be determined from the following equation

J: [cos c(p - ()+ tanh c(1 - p) sin c(p - m
x {I-Mcos c(p-()-tanh c(l-p) sin c(p -()]}" d(

= (1 [COSh c(I-()] {1_![COShC(I-()]}" d(.
J0 cosh c(I - p) 2 cosh c( I - p)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11 )

(3.12)

(3.13)

For given values of nand c, the integral equation (3.13) is numerically solved for p.
Once p is known as a function of nand c the stresses and deformations are obtained from
equations (3.1) to (3.12).
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Equations (3.1) to (3.13) are based on certain assumptions regarding the stress profile
of the shell. It now remains to determine the conditions under which the above solution
is admissible. In order to do this, a value of n is fixed and c is gradually increased from a
very small value. The corresponding values of the stresses, deflections and their slopes are
calculated and these are examined to see whether the relevant inequalities are satisfied.
If they are satisfied, another value of c is assumed for the same value of n and the process
repeated. Proceeding in this manner it is found that there are two types of violations for
different combinations of nand c. For intermediate values of c the violation takes place
in the neighbourhood of x = p of the shell simultaneously in both the regimes.

0::; x::; p:Kx ::; 0

p ::; x ::; 1:Kx :2': O.

(3.14a)

(3.14b)

For large values of c and relatively small values of n, the boundary condition (2.8) is violated
near x = 1. Let us first restrict our attention to the violation taking place in the neighbour
hood of x = p of the shell.

The limiting value of CL of c for the assumed value of n for which the solution given by
equations (3.1) to (3.13) is admissible is found numerically. Now another value of n is
assumed and the process is repeated. It is again found that there exists a limiting value CL

of c such that for values of C ::; CL all the appropriate inequalities are satisfied and for
values of C > CL the Inequalities (3.14a, b) are violated. The limiting values of nand C

delineate a regime in the n-c plane, Fig. 6 which is designated as regime I. Figures 7 (a. b, c
and d) show the stresses and deformations for the case C = 0·5 for different values of n.
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FIG. 6. Range of validity of the different solutions.
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FIG. 7(a). Axial bending moment distribution, C = 0·5.
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FIG. 7(b). Radial deformation rate, C = 0·5.
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FIG. 7(c). Circumferential force distribution. c = 0·5.
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FIG. 7(d). Axial deformation rate, c = 0·5.
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For values of nand c which lie off the regime I, it appears reasonable to modify the
preceding stress profile such that Kx = 0 for a finite portion of the shell near x = p. An
examination of Table 2 shows that in regime 1, Kx = O. This suggests the following stress
profile, Fig. 5(b).

o~ x ~ p: Intersection of 1 and f3 (3.15a)

p ~ x ~ v: Regime 1 (3.15b)

v~x~l: Intersection of 1 and IY.. (3.15c)

The solution under this hypothesis is worked out from Table 2 and equations (2.2),
(2.6), (2.7), and (2.8). For the sake of brevity, the details are not included in this paper and
the interested reader can get them from Ref. [11]. The range of validity of the preceding
solution is numerically established and it is found that all the appropriate inequalities
are satisfied in the region designated as regime II in Fig. 6. The preceding solution indicated
a violation of the boundary condition equation (2.8), namely w'(I) = 0 for large values of
c and relatively small values of n. This suggests a stress profile as shown in Fig. 5(c). Since
the analysis is very similar to the one described above we refrain ourselves from presenting
further details of the solution.

It is verified that the solution corresponding to the stress profile, Fig. 5(c) satisfies all
the appropriate inequalities in the region designated as regime III in Fig. 6.

B. Shells under combined lateral and axial pressures

For the cantilever shell, the equilibrium equation (2.2a) and the boundary condition
(2.11) show that the axial stress is given by

nx = -q/2. (3.16)

The analysis of this problem follows very closely to the one detailed in Section A.
Hence this problem will be discussed only briefly. Reasoning in a manner similar to that
given in Section A, the simplest stress profile appears to be the one shown in Fig. 8(a). The
solution corresponding to the above stress profile should satisfy the following inequalities.

O~x~l:

E,p ~ 0;

(3.17)

(3.18)

(Q.) (b) (C)

FIG. 8. Stress profiles for circular cylindrical shell under combined lateral and axial pressures.
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It is found that Inequality (3.18), namely Kx < 0 is satisfied only for a limited number
of values of nand c. The range of validity of the above solution is delineated as regime I
in Fig. 9. For values of nand c which lie off the regime I, it seems appropriate to try the
stress profile shown in Fig. 8(b). The corresponding inequalities are

OS;xS;p:

ps;xS;l:

-n = -nx-mx > 0:

£4> S; 0; Ex = Kx S; 0;

n", > 0;

E4> S; 0;

(3.19)

(3.20)

(3.21)

(3.22)

7
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o :5·0_c 70 100

FIG. 9. Range of validity of the different solutions.

In this case it is found that Inequality (3.19), namely mx < 0 is satisfied for values o~ n
and c which lie in regime II of Fig. 9. For values of nand c which violate the condition
mx < 0, the stress profile shown in Fig. 8(c) is attempted. The corresponding inequalities
are

OS;XS;p:

-n4> = -nx-mx > 0;

E4> S; 0; Ex = Kx S; 0;

(3.23)

(3.24)
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p s X S v;

-n", = -nx+mx > 0;

E,p S 0: Ex = -Kx sO;

(3.25)

(3.26)

vsxsl:
-n,p > 0;

E,p sO: €x = Kx = O.

(3.27)

(3.28)

1·0O·~5 o·s 0·75
---!.~X

FIG. 100a). Axial bending moment distribution, c "'" 5.
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FIG. JO(b}. Circumferential force distribution, C = 5.
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It is numerically verified that these inequalities are satisfied for values of nand c in
regime III of Fig. 9. The stress resultants and the deformation rates for the case c = 5 are
presented in Figs. 10 (a, b, c, d).
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FIG. JO(c). Radial deformation rate, c = 5.
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4. CONCLUSION

There are two factors which often cause considerable difficulty in solving problems of
creep stress analysis. The first is essentially lack of adequate creep data, due to the innate
variability of the creep properties of a material. The second factor is the analytical diffi
culty of determining the stresses and deformations of a given structure for an arbitrary
creep law. The solution to both problems is essentially the same. Simplified creep laws
must be chosen to enable analytical or numerical solutions to be obtained. Even though
the choice of the creep law is to some extent arbitrary, it must be chosen in such a manner
that in the first case the effect of the uncertainty in the creep data is minimized and in the
second case the simplified law gives a good approximation for the creep stresses and
deformations. In this paper, an attempt has been made to overcome some of the analytical
difficulties by replacing the non-linear function by a piecewise linear approximation and
the method is applied to studying the steady creep behaviour of circular cylindrical shells.

Considerable caution should be exercised before interpreting the above results for
actual shells. At the present time there is relatively little experimental work available on
the creep behaviour of cylindrical shells. The results obtained in this paper must therefore
be regarded as tentative.

In the first place it is necessary to assess the effect of replacing the actual criterion by a
piecewise linear approximation. In order to do this, it is necessary to investigate a shell
problem under the hypotheses of different criteria and to compare the results. Some work
is being currently done by the author along these lines and it is hoped that the results will
be made available in the near future.

The scope of the paper is limited to quasi-steady-state creep processes under constant
uniform temperature. A law of this form is considered to be a good approximation over
the secondary creep range and is valid for many materials whenever the total strain is
large enough in order to justify the neglect of elastic effects.

The problem considered in the paper is regarded as an instantaneous problem in strain
rate, and the process of integration to determine the total strain is ignored.

Neglecting elastic strains and strain-hardening will probably result in only small errors
in the predicted results. However, the assumption that the shell continues to be axially
symmetric as it deforms, is likely to lead to serious errors. It is probable that instability
will occur in some form, and this aspect of the problem has to be investigated.

Despite these limitations, it is hoped that the analysis presented here will be of some
use. A final verdict on the validity of the present solution must await further analytical
and experimental results.
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A6crpaKT-HaCTOlimali pa60Ta KacaeTCli MCCJleAOBaHHlI nOBt"AeHHlI nOJI3yqeCTH TOHKHX, ocecHMMeTpMqe

CKHX o60JIOqeK, nOABepJKeHHblX ropM30HTa.ilhHblM H oceBhlM AaBJIellHlIM.

AHaJIH3 OCHOBblBaeTCli Ha KpHTepHH TpecKa H COOTBeTcTBylOmHM 3aKOHe Te'lellHlI. JJ:JIli yrrpOllteHHlI

aHanH3a npHHSlTO, 'ITO CTeHKa 060JIO'lKH 06JIaAaeT HAeaJIbHO CJIOHCTblM CeqeHHeM. TIpeAJIaraeTCSI, 'ITO

CKOpOCTb rrOJI3yqeCTH lIBJISleTCli npOH3BeAeHHeM CTerreHHOH $yHKUHH HarrpllJKeHHSI H $YHKUHH BpeMeHH.

JJ:alOTCli AHarpaMMbl AJISI HanpllJKeHHH H Ae$opMaUHH npH pa3HblX 311aqeHHlIX napaMeTpOB 3aAaqH.


